Конспект лекций для студентов всех специальностей дневной и заочной формы обучения Челябинск

Вид материалаКонспект

Содержание


Метод молекулярных орбиталей (ММО).
Связывающие и разрыхляющие орбитали.
Порядок и энергия связи.
Сравнение МВС и ММО
4. Межмолекулярные связи
Вандерваальсовы силы
Водородная связь
Энергия и длина водородной связи.
5. Комплексные соединения
H-n: + b-f = h-n-b-f
6. Кристаллическое строение вещества
Молекулярные кристаллы.
Атомно-ковалентные кристаллы.
Ионные кристаллы.
Металлические кристаллы и связь.
Кристаллы со смешанными связями.
Внутренняя энергия, теплота и работа.
Тепловой эффект реакции.
Термохимия. Законы Лавуазье-Лапласа.
Подобный материал:
1   2   3   4   5   6

Метод молекулярных орбиталей (ММО). Метод валентных связей не может объяснить некоторые явления и факты, например, парамагнитность молекулы О2 (то есть наличие неспаренных электронов). ММО является более универсальным методом, в его рамках эти явления объяснимы.

Основные положения метода: электроны в молекулах распределены по молекулярным орбиталям (МО), которые, подобно АО, характеризуются определенной энергией и формой. МО охватывают всю молекулу, то есть являются двух- и более центровыми. В ММО используется линейная комбинация атомных орбиталей (ЛКАО). При этом соблюдаются следующие правила:

1. Число МО равно общему числу АО, из которых комбинируется МО;

2. Энергия МО может быть ниже и выше исходных АО;

3. Электроны МО, как и АО, заполняют в порядке возрастания энергии при соблюдении принципа запрета Паули и правила Гунда;

4. Наиболее эффективно комбинируются АО с сопоставимыми энергиями и симметрией;

5. Прочность связи в методе МО пропорциональна степени перекрывания АО.

Связывающие и разрыхляющие орбитали. Если АО атомов А и В обозначить через ΨA и ΨВ, а МО через ΨАВ, то согласно ЛКАО ΨАВ = а ΨA ± в ΨВ, где ΨАВ - волновая функция электрона в молекуле (МО), а и в - коэффициенты, учитывающие долю каждой АО в образовании МО, ΨA и ΨВ - волновые функции электрона (АО) в атомах А и В. При знаке «+» в уравнении получается связывающая МО (, , δ), при знаке «–« - разрыхляющие МО (МО*: *, *, δ* ).

МО *


АО АО




МО 


Диаграмма энергетических уровней АО и МО молекулы водорода.


При заполнении связывающих орбиталей соблюдаются следующие правила:

а) число МО равно общему числу АО, из которых комбинируется МО;

б) энергия МО может быть выше и ниже исходных АО;

в) электроны МО как АО заполняют в порядке возрастания энергии при соблюдении принципа запрета Паули и правила Гунда;

г) наиболее эффектно комбинируются АО с сопоставимыми энергиями и симметрией;

д) прочность связи в методе МО пропорциональна степени перекрывания АО.

При заполнении связывающих орбиталей снижается энергия молекулы и образуется прочная связь.

Разрыхляющие МО имеют пониженную электронную плотность, они не связывают атомы в молекулу и называются антисвязывающими МО.

Порядок и энергия связи.

Порядок связи n = (Nсв–Nр)/2, где Nсв – число электронов на связывающих МО, Nр - на разрыхляющих, 2 – число взаимодействующих атомов. Порядок связи может быть не только целым, но и дробным: n= 1, 3/2, и т.д.

Энергия связывающих МО ниже энергии разрыхляющих МО. Энергия связи возрастает при переходе от комбинаций АО первой оболочки к комбинациям АО второй и других оболочек с более высокими главными квантовыми числами. Энергия МО, образуемых из s-АО, ниже энергии МО, образуемых из р-АО или d-АО.

E




















Диаграмма энергетических уровней АО и МО молекулы О2.

Порядок связи n = (6-2)/2 = 2. На разрыхляющей р-орбитали имеются два неспаренных электрона, поэтому молекула парамагнитна.

Сравнение МВС и ММО

Оба метода имеют общие положения:

1) они дают одинаковое распределение электронной плотности в соединениях;

2) связь образуется за счет перекрывания АО, причем прочность связи растет с увеличением электронной плотности в области связи;

3) в зависимости от типа АО образуются -, - и δ- связи.

Метод ММО более универсален, может объяснить характер связей у более широкого круга соединений, более приспособлен для машинных расчетов, однако он более сложен, менее нагляден и более формален.


4. Межмолекулярные связи

К основным видам межмолекулярного взаимодействия относят вандерваальсовы силы, водородные связи и донорно-акцепторные взаимодействия.

Вандерваальсовы силы обуславливают притяжение межу молекулами и включают в себя три составлющие: диполь- дипольное взаимодействия, индукционное и дисперсионное взаимодействия.


1. Диполь- дипольное взаимодействие происходит за счет ориентации диполей:

2. Индукционное взаимодействие. При воздействии диполей на неполярные молекулы возникают наведенные диполи:

3. Дисперсионное притяжение возникает за счет возникновения мгновенных диполей и их суммирования:




Энергия вандерваальсовых взаимодействий невелика и выражается уравнением: , где a и b - константы, lB - расстояние между молекулами, Ев - энергия.

Водородная связь - это химическая связь, образованная положительно поляризованным водородом, химически связанным в одной молекуле, и отрицательно поляризованным атомом фтора, кислорода и азота (реже хлора, серы и др.), принадлежащих другой молекуле. Водородная связь может быть внутримолекулярной, если она образуется между двумя группами одной и той же молекулы, и межмолекулярной, если она образуется между разными молекулами (А-Н + В-К = А-Н...В-К).

Энергия и длина водородной связи. Энергия возрастает с увеличением электроотрицательности (ЭО) и уменьшением размеров атомов. Водородная связь более прочная, чем вандерваальсово взаимодействие, но менее прочная, чем ковалентная связь. Аналогичную зависимость имеет и длина связи.

Н 0,036 О Н 0,177 О

О + Н Н = О......Н Н

Н Н


F–H + F- = [ F–H…H ]

0.092 0.126


Водородные связи очень распространены, так как многие соединения содержат ковалентные полярные связи Н-О и Н-N, например, вода, кристаллогидраты, белки. Многие физические свойства веществ с водородной связью выпадают из общего хода их изменения в ряду атомов. Так, летучесть ассоциированных аномальна мала, а вязкость, диэлектрическая постоянная, теплота парообразования, температура кипения аномально повышенные. В ряду H2O – Н2S - Н2Se – H2Te свойства воды резко отличаются от свойств других веществ. Если бы вода не обладала водородными связями, она имела бы температуру плавления не 0°С, а (-100°С), и температуру кипения не 100°С, а -80°С. Водородная связь влияет и на химические свойства веществ. Так, HF - слабая кислота, тогда как НС1 - сильная. Причина в том, что HF образует с помощью водородной связи дифторид-ионы и другие более сложные ассоциаты.

5. Комплексные соединения

Комплексные соединения образуются за счет донорно-акцепторных связей (по другому они называются также координационными соединениями). Так, атом азота в аммиаке (донор) отдает на связь пару электронов, а атом бора (акцептор) -вакантную орбиталь. В результате образуется ковалентная связь:

H F H F

׀ ׀ ׀ ׀

H-N: + B-F = H-N-B-F

׀ ׀ ׀ ׀

H F H F


По координационной теории Вернера комплексные соединения состоят из двух сфер: внешней и внутренней, например: [Сu(NН3)4]SО4; SО42- - внешняя сфера, [Сu(NН3)4]+2 - внутренняя, которая включает центральный ион - комплексообразователь Сu2+ и лиганды NНз. Лигандами могут быть молекулы аммиака или гидроксил-анионы: [Zn(ОН)4]2-. Число лигандов, координируемых комплексообразователем, называется координационным числом, в данных примерах оно равно 4. В зависимости от заряда различают анионные [РF6]- , [Zn(СN)4]2- и катионные [Сu(NН3)4]2+, [Ni(Н2О)4]2+. Заряд комплекса равен алгебраической сумме заряда центрального иона и заряда лигандов.


6. Кристаллическое строение вещества

Большинство твердых тел находится в кристаллическом состоянии, которое характеризуется дальним порядком, то есть трехмерной периодичностью структуры по всему объему твердого тела (кристаллической решеткой). Кристаллические вещества имеют определенную температуру плавления, энергию и постоянную кристаллической решетки и координационное число. Координационным числом называется число частиц, непосредственно примыкающих к данной частице в кристалле. Постоянная решетки характеризует расстояние между центрами частиц, занимающих узлы в кристалле. Энергия кристаллической решетки - это энергия, необходимая для разрушения 1 моль кристалла и удаления частиц за пределы их взаимодействия. По природе частиц в узлах кристаллической решетки и природе химических связей между ними все кристаллы делятся на молекулярные, атомно-ковалентные, ионные и металлические. Кроме того, существуют кристаллы со смешанными химическими связями.

Молекулярные кристаллы. В узлах решетки находятся молекулы, между которыми действуют вандерваальсовы силы или водородные связи. Энергия кристаллической решетки невысока (5-25 кДж/моль), молекулярные кристаллы имеют низкие температуры плавления и кипения. Основные свойства кристаллов приведены в таблице 1.

Атомно-ковалентные кристаллы. В узлах кристаллов располагаются атомы, связанные ковалентными связями. Это обуславливает высокую энергию решетки и физические свойства веществ. Из-за направленности ковалентных связей координационные числа и плотность упаковки в атомно-ковалентных кристаллах обычно невелики. Свойства кристаллов см в табл. 1.

Ионные кристаллы. Структурные единицы - ионы, связанные между собой силами электростатического взаимодействия. Энергия кристаллической решетки велика. Свойства кристаллов приведены в таблице 1.

Металлические кристаллы и связь. Большинство элементов периодической таблицы Д.И. Менделеева относятся к металлам, которые имеют общие свойства: высокую электропроводность (106 - 108 См), теплопроводность, ковкость, пластичность, металлический блеск, высокую отражательную способность по отношению к свету. Общие свойства металлов можно объяснить особым типом химической связи, называющейся металлической. У большинства металлов на внешней электронной оболочке имеется значительное число вакантных орбиталей и малое число электронов. Поэтому энергетически более выгодно, чтобы электроны были не локализованы, а принадлежали всему металлу. По теории свободных электронов в узлах решетки находятся катионы металла, погруженные в электронный «газ». Между ионами металла и нелокализованными электронами существует электростатическое взаимодействие. Энергия этого взаимодействия является промежуточной между энергиями ковалентных и молекулярных кристаллов. Свойства кристаллов приведены в таблице 1.

Кристаллы со смешанными связями. Тот или иной вид химической связи или взаимодействия в чистом виде в кристаллах встречается редко. В некоторых молекулярных кристаллах (Н2О, Н2О2, НF) наряду с вандерваальсовыми возникают водородные связи, которые значительно упрочняют кристаллы. Ионная связь в чистом виде практически не существует, так как в ионных кристаллах также действует ковалентная связь, поэтому можно говорить о той или иной степени ионности. В атомных кристаллах наряду с ковалентной связью могут существовать вандерваальсовы силы, например, у графита.


Таблица 1 Типы кристаллов и свойства веществ


Вид частиц в узлах, свойства веществ

Тип кристаллов


молекулярные


Атомно-ковалентные


ионные


Металлические


Частицы


Молекулы


Атомы


Ионы


Ионы


Тип связей между частицами


Вандерваальсов ы силы, водородные


Ковалентные


Ионные


Металлические


Энергия связей


Невысокая


Высокая


Высокая


От средней до высокой


Температура плавления


Низкая


Высокая


Высокая


От низкой до высокой


Механические свойства


Мягкие


Очень твердые


Твердые и хрупкие


От мягких до очень твердых


Электрическая проводимость


Диэлектрики


От диэлектриков до


диэлектрики


Электронная




Тема: Химическая термодинамика


План

1. Общие закономерности протекания химических процессов

2. Первый закон термодинамики. Энтальпия.

3. Законы Гесса и Лавуазье-Лапласа.

4. Второй, третий законы термодинамики. Энтропия.

5. Направленность химических процессов. Свободная энергия Гиббса.


При протекании химических реакций изменяется энергетическое состояние системы, в которой идет эта реакция. Химическая система представляет собой частный случай термодинамической. Если между системой и окружающей средой отсутствует массо- и теплообмен, то она называется изолированной. Если отсутствует массообмен, но возможент теплообмен, то система является закрытой. Система может быть также открытой (возможен и массо- и теплообмен).

Система, состоящая из нескольких фаз, называется гетерогенной, однофазная система - гомогенной.

Состояние системы определяется термодинамическими параметрами (р, С, Т, V и другими). Изменение хотя бы одного из параметров влечет за собой изменение состояния системы. В термодинамике свойства системы рассматривают при ее равновесном состоянии. В настоящее время развивается термодинамика неравновесных процессов, но ее изучение не входит в нашу задачу.

Состояние системы называют равновесным, если его термодинамические параметры одинаковы во всех точках системы и не изменяются самопроизвольно во времени. Термодинамика изучает переходы системы из одного состояния в другое, переходы химической энергии в другие виды (тепловую, электрическую и др.), устанавливает количественные законы этих переходов, а также направление и пределы самопроизвольного протекания химических реакций в заданных условиях.

Если процессы перехода системы происходят при постоянстве каких-либо параметров, то они называются:

1) изобарными (р=const, либо Δр=0);

2) изохорными (V=const, либо ΔV=0);

3) изотермическими (Т=const, либо ΔT=0);

4) адиабатическими (q-const, либо Δq=0).

Состояние системы можно представить в виде уравнения состояния, связывающего все параметры системы: f (р, V, Т)=0.

Конкретный вид уравнения состояния известен лишь для ограниченного числа наиболее простых объектов. Например, уравнение Клапейрона-Менделеева описывает состояние идеального газа. Для большинства реальных систем уравнение состояния в явном виде неизвестно, поэтому для термодинамического описания системы используют функции состояния, которые называют также характеристическими функциями: внутреннюю энергию U, энтальпию Н, энтропию S, энергию Гиббса G, энергия Гельмгольца F. Значения этих функций не зависят от характера процессов, приводящих систему к данному состоянию, и определяется только параметрами системы (р, V, Т, С).

Внутренняя энергия, теплота и работа. В любом процессе соблюдается закон сохранения энергии. Энергия не может ни создаваться, ни исчезать, а только превращаться из одного вида в другие. Количественные соотношения между изменением внутренней энергии, теплотой и работой устанавливает первый закон термодинамики, который является формой выражения закона сохранения энергии: Q = ΔU+А.

Для изобарно-изотермического процесса, когда на систему не действуют никакие другие силы, кроме постоянного давления, единственным видом работы является работа расширения рΔV, тогда Q Р,т = ΔU+рΔУ. Подставим ΔU=U2–U1, а также ΔV=V2-V1 получим: Qр,т = U2–U1+pV2–pV1 = (U2+pV2)–(U1+pV1). Функция Н = U+рV называется энтальпией, и ΔН= Qp, T.

Тепловой эффект реакции. Изменение энергии системы при протекании в ней химической реакции в изобарно-изотермических условиях называется тепловым эффектом реакции Qp, T. Он равен изменению ΔН.

Если ΔН реакции меньше нуля, то в процессе реакции теплота выделяется и процесс называется экзотермическим. При ΔН реакции больше нуля - эндотермическим.

Если исходные вещества и продукты реакции находятся в стандартном состоянии, то тепловой эффект реакции называется стандартной энтальпией реакции и обозначается ΔН°298. Стандартные условия: Т = 298 К, р = 101,3 кПа. Для идеального раствора с = 1 моль/л. Для реального раствора активность а=1 моль/л.

Термохимия. Законы Лавуазье-Лапласа. Термохимия изучает тепловые эффекты химических реакций и фазовых превращений. Уравнения процессов, в которых указаны тепловые эффекты и агрегатные (фазовые) состояния, называются термохимическими. Например, Н2(Г) + ½ О2(г) = H2O(ж) + 285,8 кДж. Чаще используют вторую форму записи: Н2(Г) + ½ О2(г) = H2O(ж); ΔН°298 = -285,8 кДж.