И. З. Шарипов материаловедение рекомендовано редакционно-издательским советом угату в качестве учебного пособия для студентов вечерней и заочной формы обучения Уфа 2008

Вид материалаДокументы

Содержание


I. неметаллические материалы
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   15

ВведЕние




Умение находить и использовать материалы является важнейшим условием развития человечества. Поэтому неслучайно разные периоды его развития носят названия по тому материалу, который освоил человек. Первоначально это были природные материалы: дерево и камень, из которых изготавливали орудия труда и оружие: палки, топоры, стрелы и пр.. Этот период получил название «каменный век». Его сменил «бронзовый век», когда люди научились вплавлять медь. Затем пришёл «железный век», когда повсеместно распространилось железо. Двадцатый век часто по праву называют «веком стали».

За многовековую историю своего развития человек научился создавать и использовать огромное количество различных материалов и веществ. Их к настоящему времени уже известно более 20 миллионов. Каждый материал обладает своими уникальными свойствами: тепловыми, механическими, электрическими, магнитными и др. Часто возможность создания того или иного технического устройства – самолета , подводной лодки, компьютера и др. –определяется свойствами имеющихся в распоряжении конструкторов материалов. Поэтому потребности науки, техники, производства в новых материалах всё более возрастают. Ориентироваться во всём этом многообразии невозможно без знания закономерностей формирования свойств материалов, их зависимости от химического состава, структуры, термической обработки и т.д. Изучение и выявление таких закономерностей является задачей обширной науки – материаловедения.

Данное учебное пособие является изложением курса материаловедения, предназначенного для студентов электротехнических специальностей, поэтому в первую очередь рассматриваются электрические свойства материалов. Первая часть курса, посвященная свойствам металлов и сплавов, изложена в книге [1]. В этом учебном пособии продолжено рассмотрение основных электрических свойств и процессов в неметаллических материалах: диэлектриках и полупроводниках. Во второй главе уделено внимание механическим свойствам материалов и способам их измерения. В третьей главе – процессам происходящим при нагреве металлов, их термической и химико-термической обработке. Четвёртая глава посвящена различным конструкционным материалам: металлическим – неметаллическим , органическим – неорганическим, композиционным.

Для закрепления усвоения материала в конце тематических разделов приведены контрольные вопросы.


I. НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ



К неметаллическим материалам относятся разнообразные по природе и строению материалы – органические и неорганические, полимерные и мономерные, кристаллические и аморфные. Например, графит, стекло, бумага, дерево, слюда, керамика, пластмассы, композиционные материалы, резины, клеи, герметики, лаки и т.д.

Их диэлектрические свойства, легкость, прочность, эластичность, химическая стойкость делают эти материалы необходимыми составляющими во всех электрических устройствах, машинах и летательных аппаратах.

С точки зрения электрических свойств, вещества делятся на проводники, диэлектрики и полупроводники.

Проводники – это вещества, в которых имеется большое количество свободных носителей заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этого материала. Например, электроны в металле, ионы в жидкости или газе. Из-за этого такие материалы имеют малое значение удельного электрического сопротивления. Так у металлов оно составляет величину  = 10–8 10–6 Ом·м.

Диэлектрики – это вещества, в которых практически нет свободных носителей заряда, то есть, нет заряженных частиц, которые могли бы перемещаться внутри диэлектрика. Вследствие чего у таких материалов удельное электрическое сопротивление очень велико  = 108 1018 Ом·м

Полупроводники имеют значение удельного электрического сопротивления промежуточное между проводниками и диэлектриками  = 10–5 107 Ом·м. Их проводимость обусловлена перемещением некоторого количества подвижных носителей заряда (электронов, ионов и др.), возбужденных внешними энергетическими воздействиями (нагревом, облучением, наложением сильного электрического поля и т.д.).

Столь значительные различия в электрических свойствах материалов обусловлены различием в строении электронных энергетических зон (рис.1.). Нижние, заполненные электронами, разрешенные уровни энергии в кристалле называют валентной зоной. Верхние свободные энергетические уровни – зоной проводимости.

У диэлектриков зона проводимости отделена от валентной зоны зоной запрещенных значений энергии. Ширина запрещенной зоны у диэлектриков Eg > 3 э.в. (элекрон-вольт). Электроны не могут преодолеть столь значительный потенциальный барьер и поэтому не могут перемещаться в кристалле.



Диэлектрик Полупроводник Проводник


Рис.1. Строение энергетических зон кристаллических твердых тел.


У полупроводников ширина запрещенной зоны небольшая Eg  1 э.в. . При поглощении валентным электроном кванта энергии большего и равного ширине запрещенной зоны, электрон переходит в свободную зону проводимости и получает возможность перемещаться. После ухода электрона из валентной зоны в ней остается незанятое место – дырка. Таким образом, при возбуждении атома (за счет нагрева или облучения) в кристалле появляются два подвижных носителя заряда противоположных знаков: электрон и дырка.

У проводников запрещенная зона отсутствует, т.е. валентная зона и зона проводимости сливаются друг с другом. В этом случае при малейшем нагреве в зоне проводимости всегда содержится огромное число электронов, что и объясняет хорошую проводимость металлов.

Строение и свойства проводников металлов уже рассматривались ранее. Теперь изучим диэлектрики.