Причины нарушения герметичности емкостей с сжиженным газом введение 1 цель главы

Вид материалаДокументы

Содержание


ТАБЛИЦА 6.6. Надежность компонентов оборудования
6.12.3. Проектирование и модификация систем
6.12.4. Эксплуатация систем под давлением
6.13. Внешние факторы
6.13.2. Структурные разрушения и повреждения
6.13.2.4. Ошибки проектирования
6.13.3. Механические повреждения
6.13.4. Ветровая нагрузка
6.13.5. Подвижки земной поверхности
Подобный материал:
1   2   3   4   5

ТАБЛИЦА 6.6. Надежность компонентов оборудования


Компонент оборудования

Интенсивность потока отказов, 10-3 лет


Арматура трубопроводов (петлевые компенсаторы, тройники и вводы)

350

Вентили

260

Вращающиеся части насосов

или смесителей

60

Расширительные камеры

40

Переходные шланги под давлением, втулки

35

Емкости под давлением

17

Прокладки

4

Силовые линии

2


Системы смешения также создают ряд проблем. Хотя они работают с много меньшими скоростями, чем насосы, для них выше механические нагрузки. Стенки и соединительные детали уязвимы не меньше хотя бы потому, что в некоторых случаях их намеренно разрушают для доступа к какому-либо узлу и замены других узлов. Случались отказы прокладок из-за использования плохих материалов, а в некоторых случаях их вообще забывали ставить.

Неправильное использование расширительных камер послужило непосредственной причиной катастрофы в Фликсборо, которая обсуждается в гл. 9 и 13. Эти камеры при правильной эксплуатации повышают безопасность, забирая избыточный объем за счет термического расширения. Однако у них более тонкие стенки, чем у трубопроводов, подключенных к ним. Поэтому они легче повреждаются при механическом воздействии. Когда нагрузка распределяется "не по оси", то камера начинает вибрировать, как было на одиннадцатой тарелке в Фликсборо [Flixborough,1975; Teddington,1974].

Вентили, поскольку они имеют движущиеся части, более уязвимы, чем трубопроводы и фиттинги. За исключением мембранных клапанов, все они имеют ось, которая должна быть герметизирована. Мембранные клапаны в свою очередь подвержены специфическим отказам.

Места изменения геометрии трубопровода, такие, как изгибы, ответвления, сужения, значительно менее надежны, чем собственно трубопровод, поскольку они обычно изменяют направление потока или имеют сужения, которые могут приводить к эрозии. Хотя трубки малого диаметра работают, например, в манометрах, они частично подвергаются механическим повреждениям. В работе [High,1982] сообщалось об аварии 18 апреля 1982 г. в Эдмонтоне (Канада), в которой компрессорная, а так же здание операторной и ряд других объектов на территории предприятия были разрушены в результате разрыва соединения манометра с такой трубкой. Прямая трубка тоже уязвима. Она может лопнуть из-за гидравлического разрыва, механического повреждения (в движущихся частях) или от термического расширения или сжатия.

Следует помнить, что в системах под давлением число таких узлов, как насосы, вентили, длинные трубы и т. д., гораздо больше, чем в емкостях под давлением. Вероятность отказа где-либо в системе поэтому существенно выше, чем для емкости под давлением.


6.12.3. ПРОЕКТИРОВАНИЕ И МОДИФИКАЦИЯ СИСТЕМ

ПОД ДАВЛЕНИЕМ

Системы под давлением требуют не меньшего внимания в спецификациях, выборе материала, проектировании, изготовлении, проверке и испытаниях, чем емкости под давлением, входящие в состав таких систем. Особенно они нуждаются в надежном креплении и защите от внешних повреждений, тепловых нагрузок и ударов. Как сообщалось выше, катастрофа в Фликсборо произошла вследствие изменений (модификаций) в системе расширительных камер (сильфонов), состоящей из двух сильфонов, один из которых был модифицирован бай-пасом. Это было отмечено в отчете [Flixborough,1975], где сказано: "Катастрофа была вызвана введением в правильно спроектированную и сконструированную технологию изменений, которые нарушили целостность установки".

Нужно отметить, что были допущены следующие ошибки: а) не было сделанных по форме спецификаций: схемы изменений были нарисованы мелом прямо в цехе; б) не был проведен расчет нагрузок; в) система испытывалась при проектном давлении, а не при более высоком, как того требует действующий стандарт; г) пневматический тест проведен в нарушение требований действующего стандарта; д) не была обеспечена должная поддержка (опора) лесами и другим крепежом; е) в ходе сборки байпаса не выполнялись инструкции производителя по обеспечению безопасности при использовании расширительных камер. Правда, выбор материала был проведен корректно, и при изготовлении байпаса также не было обнаружено ошибок.


6.12.4. ЭКСПЛУАТАЦИЯ СИСТЕМ ПОД ДАВЛЕНИЕМ

Выше указывалось на возможность путаницы при замене деталей. Автору известен инцидент на хлорном заводе, который произошел вследствие ошибки при установке титанового фланца. Фланец загорелся. Данный случай обращает внимание на необходимость более надежной системы обеспечения запчастями для эксплуатации систем под давлением. Эта задача может быть облегчена использованием компьютерной системы.

Серьезные аварии, иногда со смертельным исходом, бывают вызваны ошибками в ходе эксплуатации. Например, система была открыта без сброса давления, или был разрушен плохой фланец, или произошло небрежное открытие вентиля. Клец [Kletz,1985] привлекает внимание к опасности, связанной с нелогичной нумерацией систем, например когда линии нагнетания метятся 1, 2, 5, 3, 4, т. е. не имеют сквозной нумерации. Общее обсуждение опасностей, связанных с ремонтом и сопровождением, приведено в документе [H&SE.1985]. Этот документ утверждает, что четвертая часть всех серьезных неполадок, упомянутых в нем, возникает при ремонте. Действия по ремонту систем под давлением должны регламентироваться системой "разрешений на работу". Такая система сильно формализована. В ней ремонт находится в ведении административного органа, регламентирующего все процедуры, выполняющиеся до начала и в ходе работ по ремонту.

Ключ к успеху эксплуатации систем под давлением, таким образом, лежит в ряде мероприятий. На первом месте должно быть использование таких мероприятий, которые обеспечивают высокий уровень инженерного искусства. Эти действия должны быть существенно формализованы и управляться нормативно, через механизм письменных разрешений. Кроме того, мерой, повышающей надежность эксплуатации систем, может быть, например, тщательно спланированная система управления хранением запасных частей.

6.13. ВНЕШНИЕ ФАКТОРЫ

6.13.1. ВВЕДЕНИЕ

Ряд "видов" отказов, которые выпали из рассмотрения, обычно обнаруживается при анализе технологической схемы. Некоторые из них перечисляются ниже, но приводить исчерпывающий список по обсуждаемой теме нет необходимости. Так, при выборе места размещения площадки внимание должно быть обращено на местные географические факторы.


6.13.2. СТРУКТУРНЫЕ РАЗРУШЕНИЯ И ПОВРЕЖДЕНИЯ

6.13.2.1. ВВЕДЕНИЕ

Даже простейшая установка имеет ряд структурных элементов, например фундаменты и опоры для емкостей и трубопроводов. В ответственных случаях может быть применен сложный по строению фундамент из стали и/или железобетона. Структура такого фундамента может быть нарушена по различным причинам, а следовательно, может приводить к разрывам емкостей или систем по давлением.

6.13.2.2. ПОЖАР

Часто причиной повреждения или даже полного разрушения структур служит пожар. Стальные конструкции легко деформируются от огня, если они не защищены соответствующей теплоизоляцией, которая позволяет локализовать пожар до начала деформации стальных конструкций.

6.13.2.3. КОРРОЗИЯ

Структура может быть разрушена коррозией. Это явление часто встречается вблизи или на уровне земли. Болты, которые скрепляют структуру фундамента, могут корродировать из-за просачивания грунтовых или дождевых вод под плохо поставленную прокладку, а также при отсутствии прокладки. Коррозионное повреждение может не проявляться до тех пор, пока структура не будет подвергнута необычной, дополнительной нагрузке, подобной тем, что описаны ниже.


6.13.2.4. ОШИБКИ ПРОЕКТИРОВАНИЯ

Ошибки проектирования могут быть самыми разнообразными. Одна из причин отказа - это невозможность обеспечить адекватную подстилающую поверхность или опоры.

6.13.3. МЕХАНИЧЕСКИЕ ПОВРЕЖДЕНИЯ

Механические повреждения могут происходить при столкновении автомобилей или при их загрузке. Чаще всего отмечается небрежная работа автокрана. Это иллюстрирует рис. 6.6, воспроизводимый из работы [Kletz,1985]. Стальные конструкции не могут служить в качестве опорных стрел для кранов, и такое их использование может приводить к местным деформациям или даже к разрушению.

6.13.4. ВЕТРОВАЯ НАГРУЗКА

Известно много случаев нарушения структур вследствие ошибок при оценке ветровой нагрузки. В качестве примеров можно привести разрушения моста Тей-Бридж (Шотландия, 1879 г.), разрушение подвесного моста в Такома-Нарроуз (США) и повреждения трех градирен на электростанции в Феррибридже, (Англия, 1965 г.). Автор не располагает данными об авариях, в которых емкости или системы под давлением претерпевали серьезные повреждения от ветра, но возможность таких повреждений не следует исключать.

Методология оценки ветровых нагрузок для простых структур известна с XVIII в, [Smeaton,1759]. Для таких структур, как химическое предприятие, необходима более развитая методология, и данный вопрос выпадает из рассмотрения настоящей книги. Этот вопрос скорее относится к механике и гражданскому строительству. Можно сослаться на типичную работу в этой области [Sachs,1972]. Однако не вызывает сомнений, что проектирование морских нефтяных платформ, которые структурно подобны химическим и нефтехимическим заводам и подвергаются сильным ветровым нагрузкам, внесло много нового в практику. Примером работ в данной области служит книга [Dawson,1983].


6.13.5. ПОДВИЖКИ ЗЕМНОЙ ПОВЕРХНОСТИ

Хотя хорошо спроектированная структура способна противостоять ветровой нагрузке, остается риск разрушения химического предприятия от землетрясения. Эта проблема обсуждается в книге [Waltham,1978]. Там приводится технический обзор с обширной библиографией по проблемам, связанным с землетрясениями, вулканическими извержениями, подвижками, оползнями и обвалами. Хотя в принципе все они могут сказаться на системах под давлением, приводимое ниже обсуждение сосредоточено на землетрясениях как на наиболее вероятной причине разрушения. Могут иметь значение и другие явления подвижек земной поверхности, не обсуждаемые в работе [Waltham,1978]. Это таяние вечной мерзлоты - грунтов, которые постоянно заморожены в отсутствие человеческой деятельности и представляют собой хорошие фундаменты. Однако при передаче им тепла от предприятия они превращаются в грязь.

Землетрясения интенсивно изучаются как фактор человеческого бытия и физических разрушений в некоторых частях земного шара. Как и следовало ожидать, большая часть практических исследований, связанных с землетрясениями, сконцентрирована на проектировании сейсмоустойчивых зданий, мостов, дорог и других объектов гражданского строительства. Программа сейсмоустойчивого строительства была развернута в Японии в 1923 г. и в США в 1925г.

В последние годы проводятся широкие исследования эффектов при землетрясениях в связи со строительством АЭС, особенно в США, где много областей повышенной сейсмичности. В работе [Alderson,1985], имеющей обширную библиографию, приводится обзор критериев сейсмоустойчивого проектирования для Великобритании. В этой же работе приводятся описания имевших место землетрясений. Одним из них была инициирована авария 1952 г. в Керн-Каунти (шт. Калифорния, США), в ходе которой произошел взрыв парового облака, за которым последовал сильный пожар из-за разрушения двух хранилищ бутана. У многих объектов предприятия были разрушены крепления фундаментов. Однако описания девяти других случаев, приведенных в цитируемой работе, не содержат данных о разрушениях химических предприятий или общественных сооружений. Олдерсон в этой работе утверждает, что "современные комплексные производства крупными землетрясениями до сих пор не затрагивались". Далее он обсуждает типы разрушений гипотетического предприятия Великобритании от землетрясений, риск которых порядка 10'4.

В работе [Muir,1985] говорится, что землетрясения составляют серьезную угрозу для безопасности нефтехимических установок. Во многих сейсмически активных местах Европы размещены промышленные предприятия, спроектированные без учета требований сейсмоустойчивости. Автор упомянутой работы полагает справедливым, что при выборе идеальной площадки для нефтехимического производства проектировщики должны учитывать современные геологические процессы, которые сопровождаются увеличением опасности землетрясений.

Толчки, возникающие из-за человеческой деятельности, как, например, при подземных взрывах, могут вызывать те же эффекты, что и землетрясения, и, подобно землетрясениям, приводить к авариям.

Из всего сказанного следует, что все площадки, содержащие основные опасности химических производств, должны быть спроектированы соответствующим образом, чтобы обладать устойчивостью при землетрясениях.

* В технической литературе на русском языке используются также термины "техническая документация" и "технические условия". - Прим, перев.


* В нашей стране сложилось несколько отличное от западного отношение к задачам как операторов, так и персонала промышленного предприятия в целом. Например, деятельность оператора оценивается по выпуску товарной продукции в его смену (светлых нефтепродуктов на НПЗ или электроэнергии на АЭС), но не по точности соблюдения им требований технологического регламента. Поощряются всякого рода рационализаторская деятельность и улучшения, предлагаемые персоналом предприятия, хотя они часто даже не согласуются с главным конструктором и проектировщиком. По-видимому, разделение задач безусловного выполнения требований регламента и задач по повышению эффективности производства является важным резервом повышения безопасности в промышленности. - Прим. ред.


** Здесь автор мимоходом замечает об одной из важнейших особенностей аварий современных промышленных предприятий [Легасов,1988] - цепном механизме развития аварии (эффект "домино"). Согласно статистике аварий, около 90% аварий на промышленных предприятиях сегодня развиваются именно по цепному механизму. - Прим. ред.


*** В условиях нашей страны отмеченная тенденция усиливается межведомственной чересполосицей. Даже для очень ответственных участков конечное изделие изготовляется из комплектующих, поставляемых различными министерствами. А реально ведомства очень сильно различаются по культуре обеспечения надежности и уровню качества выпускаемого ими оборудования. - Прим. ред.