«Ядерные превращения. Деление ядер»

Вид материалаРеферат
Стадии процесса деления
Условное схематическое изображение стадий процесса деления (r — расстояние между образовавшимися ядрами, t — время протекания ст
Энергия деления
5×1023МэВ = 1,94×1010кал = 8,1×1010Дж = 22,5 МВт·ч ≈ 1 МВт·сут
Осколки деления
Выход осколков деления 235U
Продукты деления
Нейтроны деления
Мгновенные нейтроны
Запаздывающие нейтроны
Военная сфера
Синтез новых элементов
Научные исследования
Подобный материал:
1   2   3   4   5   6   7

Стадии процесса деления


ссылка скрыта

Условное схематическое изображение стадий процесса деления (r — расстояние между образовавшимися ядрами, t — время протекания стадий)


Деление начинается с образования составного ядра. Спустя примерно 10−14 секунды это ядро делится на два осколка, которые, ускоряясь под действием кулоновских сил, разлетаются в противоположные стороны. Ускоренное движение осколков заканчивается спустя 10−17с с момента их образования. К этому времени они имеют суммарную кинетическую энергию примерно 170 МэВ и находятся на расстоянии друг от друга примерно 10−8 см, то есть порядка размера атома.

Часть энергии деления переходит в энергию возбуждения осколков деления, которые ведут себя как любые возбуждённые ядра — либо переходят в основные состояния, излучая гамма-кванты, либо испускают нуклоны и превращаются в новые ядра, которые также могут оказаться в возбуждённом состоянии и их поведение будет аналогично поведению ядер, образовавшихся при делении исходного составного ядра.

Испускание ядром нуклона возможно лишь в случае, когда энергия возбуждения превышает энергию связи нуклона в ядре, тогда он испускается с большей вероятностью, чем гамма-квант, так как последний процесс протекает гораздо медленнее (электромагнитное взаимодействие намного слабее ядерного). Чаще всего испускаемым нуклоном является нейтрон, так как ему не нужно преодолевать кулоновский барьер при вылете из ядра, а для осколков деления это ещё вероятнее, так как они перегружены нейтронами, что приводит к понижению энергии связи последних. Энергия возбуждения осколков деления примерно равна 20 МэВ, что намного больше энергии связи нейтронов в осколках, а следовательно возможно испускание одного или двух нейтронов каждым из осколков спустя 10−17−10−14 секунды с момента их образования. В результате практически мгновенно после деления составного ядра осколки деления испускают два или три нейтрона, которые принято называть мгновенными.

Образовавшиеся ядра по-прежнему находятся в возбуждённых состояниях, однако в каждом из них энергия возбуждения меньше энергии связи нейтрона, поэтому остатки энергии возбуждения излучаются в виде гамма-квантов спустя 10−14−10−9 секунды с момента испускания нейтронов, такие гамма-кванты также называются мгновенными.

В дальнейшем движение осколков деления не связано с их превращениями. Так как они увлекают за собой не все электроны исходного атома, из них образуются многозарядные ионы, кинетическая энергия которых тратится на ионизацию и возбуждение атомов среды, что вызывает их торможение. В результате ионы превращаются в нейтральные атомы с ядрами в основных энергетических состояниях. Такие атомы называются продуктами деления.


Продукты деления имеют ядра со всё ещё избыточным количеством нейтронов по сравнению со стабильными ядрами в той же области массовых чисел и являются таким образом β-радиоактивными, каждое из них служит началом серии β−превращений, заканчивающихся только при достижении стабильного состояния. Ядра одной серии составляют так называемую цепочку распада, состоящую в среднем из трёх β−переходов, скорость которых зависит от избытка нейтронов, уменьшается по мере приближения к стабильному состоянию и намного меньше рассмотренных выше стадий процесса деления. β−распад сопровождается испусканием антинейтрино.

В результате β−распадов могут образовываться ядра в возбуждённых состояниях, которые переходят в основные состояния путём излучения гамма-квантов либо, крайне редко, превращаются в другие ядра путём испускания нейтронов. Такие нейтроны называются запаздывающими.

Следует отметить, что в процессе деления возможно образование частиц, не упомянутых выше (например α-частиц), либо осколков деления в количестве, большем двух, однако эти события настолько маловероятны, что на практике обычно не рассматриваются.

Энергия деления


При делении тяжёлого ядра выделяется примерно 200 МэВ и более 80 % этой энергии составляет кинетическая энергия осколков деления. Остальная часть распределяется между нейтронами, гамма-квантами, β−частицами и антинейтрино. При этом соотношение между отдельными составляющими энергии деления слабо зависит от делящегося ядра и от энергии нейтрона, вызывающего процесс деления.

Превращающаяся в тепло энергия на один акт деления (200 МэВ), в перерасчёте на 1 г прореагировавшего 235U даёт:


5×1023МэВ = 1,94×1010кал = 8,1×1010Дж = 22,5 МВт·ч ≈ 1 МВт·сут


Интересно, что около 5 % всей энергии деления уносится с антинейтрино и не может быть использовано.

Энергия осколков деления, мгновенных гамма-квантов и нейтронов превращается в тепло практически мгновенно. Энергия β−распада, составляющая примерно 7 % всей энергии деления, выделяется постепенно в течение длительного времени, так как β−распады происходят значительно позже момента деления ядра. Это запаздывание приводит к так называемому остаточному энерговыделению в остановленном ядерном реакторе, которое (в случае его работы на большой мощности) после остановки настолько велико, что необходимо принимать меры для охлаждения реактора. Причём вначале остаточное энерговыделение уменьшается довольно быстро: треть за 1 минуту, 60 % — за 1 час, около 75 % — за 1 сутки. Затем энергия выделяется всё медленнее, вследствие чего отработавшее в реакторе ядерное топливо обладает настолько большой радиоактивностью и, соответственно, остаточным энерговыделением, что требует длительной (по нескольку лет) выдержки в специальных бассейнах с охлаждением.


Распределение энергии деления, МэВ:


Ядро

Кинетическая энергия осколков

Энергия мгновенных гамма-квантов

Энергия запаздывающих гамма-квантов

Энергия нейтронов

Энергия бета-частиц

Энергия антинейтрино

Суммарная энергия

ссылка скрыта

160,5

7,0

7,0

5,0

9,0

10

198,5

ссылка скрыта

166,0

7,2

7,2

4,9

9,0

10

204,1

ссылка скрыта

171,5

7,0

7,0

5,8

9,0

10

210,3

Осколки деления

ссылка скрытассылка скрыта


Выход осколков деления 235U


При делении 235U тепловыми нейтронами образуется около 30 различных пар осколков, преимущественно неравной массы. Самый лёгкий из них имеет массовое число 72, самый тяжёлый — 161. Наиболее вероятно деление на осколки с отношением масс 3/2. Выход таких осколков достигает примерно 6 %, в то время как осколков с равными массами — примерно 10−2 %. Такой характер распределения осколков по массам наблюдается для всех делящихся нуклидов как при спонтанном делении, так и при делении возбуждённых составных ядер независимо от вида частиц, бомбардирующих исходные ядра. Кривые выхода осколков деления слабо различаются для разных делящихся ядер, это говорит о том, что асимметрия в распределении осколков присуща самому механизму деления ядер.

Такая асимметричность деления осколков противоречит предсказаниям капельной модели ядра, так как бесструктурная капля с наибольшей вероятностью должна делиться как раз на две равные части. Деление на неравные части объясняется в рамках оболочечной модели ядра как результат преимущественного образования ядер с заполненными оболочками, содержащими 50 и 82 нейтронов (магические числа). Однако асимметрия деления уменьшается при увеличении энергии возбуждения делящегося ядра и при больших её значениях исчезает. Например, в случае деления 235U тепловыми нейтронами вероятность симметричного деления составляет примерно 0,01 %, нейтронами с энергией 14 МэВ около 1 %, а при энергии нейтрона более 100 МэВ распределение осколков деления по массам имеет один максимум, соответствующий симметричному делению ядра. Такая тенденция находится в согласии с представлением о применимости ядерных моделей.

Продукты деления


Массовое число продуктов деления, как правило, не изменяется в процессе β−превращений, поэтому выход осколка деления с определённым массовым числом можно рассматривать и как выход всех продуктов деления с тем же массовым числом. Таким образом, среди продуктов деления находятся в основном атомы с массовыми числами ядер в интервалах 90—105 и 130—145 (см. график в предыдущем разделе).

Состав продуктов деления в общем случае постоянно изменяется, однако если процесс деления продолжается достаточно долго с постоянной скоростью, то в большинстве цепочек β−распада достигается равновесие и химический состав продуктов деления становится неизменным. Каждый элемент при этом представлен многими изотопами из разных цепочек.

В состоянии равновесия из всех продуктов деления примерно:

25 % — редкоземельные элементы,

15 % — цирконий,

12 % — молибден,

6,5 % — цезий,

16 % — благородные газы (ксенон и криптон).


Количество продуктов деления примерно в 2 раза превышает количество разделившихся ядер. Так как размеры всех атомов приблизительно одинаковы, то продукты деления занимают больший объём, чем атомы делящегося материала, что приводит к радиационному распуханию ядерного топлива, то есть образование в нём пор, заполненных газообразными продуктами деления или рост его объёма.


Нейтроны деления

ссылка скрыта

Зависимость среднего числа нейтронов, испускаемых при делении от энергии нейтронов, вызывающих деление для различных ядер


Испускание нейтронов осколками деления — одна из важнейших особенностей процесса деления тяжёлых ядер. Именно она позволяет создать при определённых условиях цепную реакцию деления.
Мгновенные нейтроны


Это нейтроны, испускаемые осколками деления практически мгновенно после деления составного ядра, в отличие от запаздывающих нейтронов, испускаемых продуктами деления через некоторое время после этого. Количество нейтронов, испускаемых в одном акте деления — случайная величина, распределённая примерно по закону Гаусса около среднего значения (2-3 нейтрона на одно делящееся ядро). Мгновенные нейтроны составляют более 99 % нейтронов деления.

Среднее число нейтронов , образующихся при делении, зависит от сорта ядра-мишени и энергии налетающего нейтрона. Наблюдается заметный рост при увеличении энергии возбуждения делящегося ядра. Экспериментальные данные хорошо описываются линейной зависимостью вида:

,

где  — значение для E=0,025 эВ.

Запаздывающие нейтроны


Это нейтроны, испускаемые продуктами деления через некоторое время (от нескольких миллисекунд до нескольких минут) после реакции деления тяжёлых ядер, в отличие от мгновенных нейтронов, испускаемых практически мгновенно после деления составного ядра.

В очень редких случаях в цепочке β-превращений образуется ядро с энергией возбуждения, превышающей энергию связи нейтрона в этом ядре. Такие ядра могут испускать нейтроны, которые называются запаздывающими. Испускание запаздывающего нейтрона конкурирует с гамма-излучением, однако в случае перегруженности ядра нейтронами более вероятно будет испускание нейтрона.

Несмотря на малый выход, запаздывающие нейтроны играют огромную роль в ядерных реакторах. Благодаря большому запаздыванию, эти нейтроны существенно, примерно на два порядка и более, увеличивают время жизни нейтронов одного поколения в ядерном реакторе и тем самым создают возможность управления самоподдерживающейся цепной реакцией деления.

Ядро, образовавшееся при испускании запаздывающего нейтрона, может находиться либо в основном, либо в возбуждённом состоянии. В последнем случае возбуждение снимается гамма-излучением.

Применение


Область применения ядерных реакций очень обширна. В настоящее время ядерные реакции применяются в следующих областях деятельности человечества:
  • энергетика;
  • военная сфера;
  • синтез новых элементов;
  • медицина;
  • научные исследования.


Ядерные реакции проникли практически во все сферы деятельности человека.


Энергетика


Энергетика - важнейшая отрасль хозяйства и промышленности. Благодаря тому, что человек научился проводить управляемую ядерную реакцию и аккумулировать полученную энергию, затрачивая при этом минимальное количество сырья, намного уменьшилось потребление традиционных видов органического топлива. Обычно, для получения ядерной энергии используют цепную ядерную реакцию деления ядер 235U или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло. Ядерная энергия производится в атомных электрических станциях, используется на атомных ледоколах, атомных подводных лодках; США осуществляют программу по созданию ядерного двигателя для космических кораблей, кроме того, делались попытки создать ядерный двигатель для самолётов.

Деление ядер — мощный источник энергии, которое человечество использует в больших масштабах уже более 50 лет. Применение свойства деления, которое заключается в том, что при определённых условиях реакция деления может быть цепной, привело к созданию ядерных реакторов, использующих управляемую цепную реакцию для различных целей, и ядерного оружия, использующего неуправляемую цепную реакцию. Наряду с термоядерным, ядерное оружие является самым сокрушительным видом вооружений. Крупнейшими международными организациями в области использования атомной энергии являются МАГАТЭ и ВАО АЭС.


Военная сфера


Применение цепных ядерных реакций в военной сфере вызывает наибольшее количество вопросов и опасений. При проведении неуправляемой, т.е. взрывной, ядерной реакции погибает все живое на огромных пространствах. Не зря ядерное оружие относят к числу оружия массового поражения. Впервые силу ядерного оружия ощутили на себе японцы - жители городов Хиросима и Нагасаки - в конце Второй Мировой войны. Последствия сказываются и в наше время.


Синтез новых элементов


Ядерные реакции являются, по сути, реакциями получения новых элементов, т.к. при расщеплении или слиянии ядер получаются другие элементы таблицы Менделеева.


Медицина


В связи с прогрессом в развитии техники ускорителей и новых диагностических систем, таких как сцинтилляционные камеры, однолучевой и позитронно-эмиссионный томографы, низкоэнергетические детекторы типа многопроволочных пропорциональных камер и др., все большее значение в медицинских и биохимических исследованиях приобретают различные радионуклиды. В современной ядерной медицине для научно-исследовательских, диагностических и терапевтических целей применяют свыше 50 циклотронных радионуклидов с периодом полураспада от нескольких минут до нескольких лет. В работе рассматриваются общие положения, методы и экспериментальные результаты, определяющие получение наиболее важных и широко используемых в настоящее время, а также перспективных для ядерной медицины и биохимии циклотронных радионуклидов. Среди них группа ультракороткоживущих изотопов (11С, 13N, 15O, 18F), некоторые гамма-излучатели (123I, 201Tl, 67Ga, 111In), генераторные радионуклиды (18Rb,81mKr, 82Sr, 82Rb, 52Fe, 52mMn и др.), группа перспективных радионуклидов специального назначения (26Al, 67Cu, 97Ru,237Pu) и ряд других изотопов.


Научные исследования


Ядерные реакции довольно широко применяются в научных работах в определенных сферах. Существуют целые научные города, занимающиеся научными исследованиями с использованием ядерных технологий.

Заключение


Итак, в данном реферате были рассмотрены основные виды ядерных превращений, история их открытия, особенности протекания некоторых реакций, основные сферы применения деления ядер и остальных видов превращений. Были освещены также такие темы, как механизм деления ядер и составляющие этого процесса, например: стадии деления, энергия деления, продукты деления и др.

Несмотря на относительно недавний срок изучения (менее ста лет), данная тема вызывает большой интерес, что вполне объяснимо, учитывая потенциал исследований ядерных превращений. Доля энергии, вырабатываемой на АЭС, с каждым годом растет, применение ядерных превращений в медицине тоже оправдывает себя. А наличие в данной области сфер, еще не получивших практическое применение, таких как, например, термоядерный синтез, будет и дальше приковывать к себе интерес ученых.

Список литературы

  • «Большая Советская Энциклопедия»
  • gsveta.ru (2011)
  • К. Н. Мухин «Экспериментальная ядерная физика», 5е изд
  • sinp.msu.ru (2011)
  • com (Portal of science and technology © 2003-2010 Copyright All rights reserved)
  • emistry.ru (Copyright © Newchemistry.ru 2006. All Rights Reserved)
  • ch.ru (© 2002-2011 ООО «Фэшн Пресс», © 2002-2011 Sanoma Independent Media)