Курс лекций по дисциплине «безопасность жизнедеятельности» для специальности иаб (Архитектура) 1-й

Вид материалаКурс лекций

Содержание


Классификация тяжести биоповреждения
Подобный материал:
1   2   3   4   5   6   7   8   9

Табл.1


Классификация тяжести биоповреждения

Ста-дия

Проявления (характерные признаки)

видимые

невидимые

1

Локальные изменения в поверхностном слое (отдельные небольшие очаги пигментации, поверхностные шелушения), площадь повреждений до 10 мм

Появление в микроструктуре микроводорослей и бактерий. Возможны следы новообразований (сотые доли процента)



Мокрые пятна, видимая кромка капиллярного увлажнения, зеленый налет и локально расположенные темные пятна размером не более нескольких мм, как правило, заселенные сухопутными водорослями или темного цвета микролишайниками

Появление в микроструктуре отдельных бактериальных колоний, возможно наличие единичных гифов грибов



Появление на фасадных поверхностях налета зеленого и серого цвета в местах постоянного увлажнения слизистых пленок

Для стадии 26 явные следы новообразований (от десятых долей до одного процента)



Зарастание лишайниками, мхами. Появление признака слегка заметной шероховатости открытых поверхностей. Возможны белые солевые налеты, прочно сцементированные с материалом

Преобладание биотических структур сообществ мхов и лишайников, наличие колоний бактерий. Перекристаллизация кальцита в рамках углекислотного равновесного процесса. Количество новообразований не более 1%



Концентрация налета от серого цвета до черного. Появление на фасадных поверхностях визуально легко определяемых контуров и площадей с наличием желто-серых масляно-влажных пятен. На соседних участках возможны высолы, легко удаляемые с поверхности, и вздутия. Интенсифицируется процесс отшелушивания наиболее плотных поверхностных слоев. Внутри помещений — интенсивное зарастание влажных участков плесневыми грибами и колониями бактерий. Микроорганизмы присутствуют на площадях от десятков см до нескольких метров

Преобладание на поверхности гетеротрофных грибов и гифов внутри камня. Накапливание в поверхностных слоях кристаллогидратов и веществ, обладающих повышенной гигроскопичностью. На поврежденных участках под поверхностной коркой присутствуют новообразования с преобладанием сульфатов натрия, калия и кальция (сульфатизация свыше 5%)



Отслоение поверхностных корок («патины») в случае нарушения баланса увлажнения в наружных ограждающих конструкциях. Локальные выкрашивания в лицевом слое материала. Нарушение связности отделочных материалов. Появление на горизонтальных поверхностях и в трещинах растительности

Новообразования при перекристаллизации кальцита в поверхностных слоях. Присутствие в материале метастабильных соединений магния и железа



Растрескивание, отслоение штукатурных слоев. Скалывание, расслоение конструкционных материалов. Полное разрушение связующего кладочного и шовного растворов. Бурный рост культуры грибов или бактерий даже при незначительном нарушении тепловлажностного режима в помещениях

Необратимые изменения фазового состава. Большое содержание загрязнителей — сульфатов, соединений натрия, новообразований, возникших при растворении основных минералов материала (сульфатизация свыше 15%). Частое присутствие хлорида натрия на испаряющих поверхностях конструкций и в объеме материала


На территориях с нарушенным экологическим равновесием меняется механизм разрушений. Не зная его, невозможно эффективно выбрать способы защиты конструкций зданий от заселения микроорганизмами (бактериями, грибами и т.д.), обеспечить антикоррозионную защиту и экологическую безопасность среды внутри помещений в зданиях с зафиксированными случаями биоповреждений. Для прогнозирования и комплексного учета влияния микробиотических сообществ на кинетику разрушения строительных конструкций следует учитывать ряд потенциальных причин, связанных со спецификой жизнедеятельности микроорганизмов в различных средах. Динамика же разрушения, в зависимости от изменения абиотических условий окружающей среды, будет зависеть еще и от вида бактерий, грибов и продуктов их метаболизма.

Все виды микроорганизмов, наиболее часто участвующих в процессах коррозии строительных материалов, специалисты разделяют на три основные группы.

• К первой группе относят зеленые водоросли, цианобактерии (сине-зеленые водоросли). Энергию и углерод для построения собственного организма, подобно растению, они получают при фотосинтезе с участием солнечной энергии и оксида углерода воздуха.

• Ко второй группе относят многие виды бактерий и грибы, которые являются минерализаторами органического материала.

• Третья группа включает специальные анаэробные группы бактерий, то есть те, которые действуют при отсутствии кислорода воздуха.


При обследовании биоповреждений материалов необходима идентификация этих групп микроорганизмов и изучение механизма их воздействия на городские сооружения и архитектурные памятники.

Причинами заселения строительных материалов микроорганизмами является возможность удовлетворения их пищевых и энергетических потребностей. Характер заселения определяется, в значительной степени, как условиями окружающей среды (абиотическими факторами — влажностью, температурой и т.д.), так и химическим составом материала.

Наряду с питательной средой и источниками энергии большинству микроорганизмов необходима высокая влажность. Некоторые микроорганизмы могут значительное время обходиться и без влаги и даже сами производить воду, но для роста колонии этого обычно бывает недостаточно.

В экосистеме с ненарушенным равновесием заселение материала памятника происходит фототрофными (фотосинтезирующими) микроорганизмами, к которым относятся водоросли, синие водоросли (цианобактерии), мхи и лишайники. Воздействие колоний этих микроорганизмов на строительный материал оценивается различными специалистами неоднозначно. Некоторые из них придерживаются мнения, что повреждающее влияние на конструкцию при ее зарастании водорослями связано с постоянной повышенной влажностью. Другие специалисты считают, что наличие фототрофных микроорганизмов не способствует заметному выветриванию породы, а водоросли и лишайники даже затрудняют заселение материала опасными бактериями и грибами.

Таким образом, заселение материалов различными микроорганизмами обуславливается, прежде всего, экологическими факторами окружающей среды. При этом микроорганизмы образуют собственный, достаточно устойчивый микоценоз (грибной ценоз). Многие из подобных микоценозов оказывают на материал сложное комплексное воздействие. Оно может явиться основной причиной коррозии материалов или способствовать ускорению коррозионных процессов, причиной которых являются значительные нарушения в экосистеме вблизи памятника.

Основные факторы окружающей среды и зависимость от них тех или иных обуславливающих коррозию материала микроорганизмов приведены в табл. 2.

Присутствие всех перечисленных условий является возможной причиной заселения памятника соответствующей группой микроорганизмов. Кроме того, необходимо учитывать экологические эффекты примененных средств борьбы с уже имеющимся заражением материала. Поэтому с позиций экологии желательны оценка устойчивости самих материалов для строительства к биологическим воздействиям и оценка возможных воздействий на окружающую среду средств борьбы с биокоррозией. Необходимо учитывать взаимосвязь процессов жизнедеятельности микробиоты и возможных их воздействий на материалы, которые могут быть или питательным субстратом, или источником энергии, или и тем, и другим одновременно.

Итак, можно достаточно точно констатировать, что для территорий с нарушенным экологическим равновесием, характерным для городов с населением более 1 млн чел., процесс повреждения, в частности, архитектурных памятников связан с биотическими факторами и ими контролируется.

Экологические предпосылки микробиотического заселения строительных материалов представляют определенный интерес не только с точки зрения характеристик окружающей среды, но и с позиции оценки самих материалов. В связи с этим актуальной задачей является анализ характерных биоповреждений строительных материалов и конструкций, определение условий роста микроорганизмов, разработка эффективных способов борьбы с биокоррозионными процессами и системы предупреждающих мероприятий. Профилактика микробиотического загрязнения памятников архитектуры может заключаться в управлении и корректировке тех или иных условий жизнедеятельности микроорганизмов.

Таблица 2