Методические указания к курсовой работе для студентов архитектурных специальностей

Вид материалаМетодические указания

Содержание


Предотвращение концентрации отраженного звука
Формирование диффузного звукового поля
Расчет времени реверберации зала
1 – хоровая и органная музыка; 2
Звукопоглощающая отделка зала
Особенности проектирования залов различного назначения
Подобный материал:
1   2   3

Предотвращение концентрации отраженного звука


В залах не должно быть вогнутых поверхностей, обладающих свойством концентрировать отражаемый ими звук. Концентрация звука при малом запаздывании приводит к ухудшению разборчивости речи, а при большом запаздывании – к появлению сильного эха.

Для предотвращения концентрации звука радиус кривизны отражающей поверхности (стены или потолка) должен по крайней мере в два раза превышать расстояние от отражающей поверхности до источника.

По той же причине залы, имеющие в плане круглую, овальную, подковообразную или другую форму с вогнутыми стенами допустимы лишь при специальном расчленении вогнутых поверхностей, предотвращающем концентрацию отраженного звука (рис. 12).

Выпуклые поверхности (рис. 13), наоборот, создают рассеянное отражение звука и повышают диффузность звукового поля.





Рис. 9. Рациональные типы примыкания потолка к задней стенке:

а – наклон задней стены; б – наклонный участок потолка; в – наклон участка потолка и задней стены; г – острый угол между потолком и задней стеной





Рис. 10. Расчленение потолка секциями:

а – неудовлетворительные очертания секций;

б, в – удовлетворительные очертания





Рис. 11. Звукоотражатели в передней части боковых стен





Рис. 12. Зал с круглой формой плана:

а – распределение звуковых отражений:

1, 2 – концентрация соответственно первых и вторых отражений;

б – эффективное членение стен




Рис. 13. Формы членения стены секциями


Формирование диффузного звукового поля


При акустическом проектировании следует сочетать противоречащие друг другу требования: направленность первых звуковых отражений и достаточную диффузность звукового поля.

Для обеспечения достаточной диффузности звукового поля необходимо, чтобы значительная часть внутренних поверхностей зала создавала рассеянное ненаправленное отражение звука. Это достигается расчленением поверхностей балконами, пилястрами, нишами, секциями и другого типа членениями.

Гладкие большие поверхности не способствуют хорошей диффузности. Особенно нежелательны гладкие параллельные друг другу плоскости (например боковые стены), так как в результате многократного отражения звука между ними может возникнуть «порхающее эхо». Расчленение таких поверхностей ослабляет этот эффект. Повышает диффузность и небольшое отклонение стен от параллельности (на 2,5–6 о).

На поверхностях, создающих направленные малозапаздывающие по отношению к прямому звуку отражения, членение обычно отсутствует. Если же оно имеется, то не должно создавать сильного рассеивания звука. Таковы секции потолка, показанные на рис. 10, б и в. Эти секции дают направленные отражения и несколько рассеивают отраженный звук.

На поверхностях, дающих малозапаздывающие отражения, недопустимо устройство поперечных прямоугольных пилястр или ребер (рис. 14).Такие элементы вызывают обратные отражения звука к источнику, при этом возникают зоны, лишенные геометрических отражений.





Рис. 14. Отражения от поперечных пилястр или ребер


Сильно рассеивающие детали целесообразно размещать на поверхностях, не дающих малозапаздывающих отражений, направленных к слушателям. Хорошо рассеиваются звуковые волны, длина которых близка к размерам детали. Наиболее эффективны элементы, имеющие криволинейное выпуклое (рис. 15) или треугольное сечение, так как они рассеивают также и более короткие волны.

При периодически расположенных пилястрах рассеивание звука зависит не только от формы и размеров их сечений, но и от их шага. Заштрихованная область на рис. 16 показывает примерные пределы, в которых лежат размеры пилястр и их шаг, дающие существенное рассеивание отраженного звука в соответствующих областях частот.





Рис. 15. Образование диффузных отражений от поверхности

с рельефом полукруглого сечения




Рис. 16. Профили элементов членения диффузно отражающей поверхности:

а – ширина и глубина элементов; б – шаг членения; в – частотные границы,

в пределах которых отраженный звук будет рассеянным


Пилястры выпуклого и треугольного сечения, как уже было сказано, рассеивают также и более высокие частоты по сравнению с указанными на рисунке. Мелкие элементы размером 10–20 см рассеивают частоты выше 1000 Гц. Эффективное рассеивание в области частот 200–600 Гц дают пилястры размерами 1–2 м по ширине и 0,5–1 м по глубине при шаге членения 2–4 м. Если поверхности таких пилястр подвергнуть дальнейшему членению мелкими деталями выпуклой формы, то будет достигнуто рассеивание в широком диапазоне звуковых частот. Рассеивающий эффект членений улучшается, если их шаг нерегулярен. Членение с мелким регулярным шагом 5–20 см (например, отделка поверхностей рейками или волнистой асбофанерой) вызывает периодические отражения коротких звуковых импульсов (хлопков, ударов), в результате чего возникает искажение звука.

Балконы, ложи и непараллельные стены повышают диффузность звукового поля зала на таких низких частотах, на которых пилястры не дают достаточного рассеивания.

В залах вместимостью более 600 слушателей целесообразно устройство одного или нескольких балконов, что снижает объем зала, уменьшает его длину и увеличивает диффузность поля.

Отношение выноса балкона a1 к средней высоте подбалконного пространства h1 должно быть не более 1,5 (рис. 17). Такое же отношение должно соблюдаться и в ложах. Если над балконом нет выше расположенного балкона, то отношение a2/h2 может быть увеличено до 2 (см. рис. 17). При соблюдении указанного условия достигаются хорошая слышимость и разборчивость в глубине пазух над балконом и под ним. Наклон потолка пазух также улучшает слышимость.

Итак, основными условиями, обеспечивающими диффузность звукового поля, являются:

отсутствие резких различий в основных размерах зала;

непараллельность стен;

членение значительной части внутренних поверхностей.




Рис. 17. Целесообразные пропорции балконного пространства


Расчет времени реверберации зала


Процесс затухания звука в помещении при выключении действующего стационарного источника называется реверберацией. Для акустических оценок помещения используют стандартное время реверберации, которое является основной количественной характеристикой и представляет собой время, в течение которого уровень звукового давления снижается на 60 дБ.

Рекомендуемое время реверберации проектируемого помещения принимается по графикам, предложенным в литературе, в зависимости от объема и назначения зала и обеспечивается путем соответствующей корректировки объема помещения и его внутренней отделки. В качестве примера на рис. 18 приведены рекомендуемые пределы времени реверберации для залов различного назначения на частоте 500 Гц.

Допускается отличие расчетного времени реверберации от рекомендуемого не более чем на 10 % на средних и высоких частотах, на частотах менее 500 Гц возможно некоторое увеличение времени реверберации с тем, чтобы на частоте 125 Гц расхождение не превышало 40 %.

Расчетные зависимости для определения времени реверберации справедливы для диффузного звукового поля. Следовательно, в проектируемых помещениях необходимо обеспечить достаточную степень диффузности звукового поля и сформировать правильное распределение отраженного звука, направляя большую его часть на удаленные от источника зрительные места.





Рис. 18. Зависимость оптимальных значений времени реверберации

от объема помещения для частоты 500 Гц:

1 – хоровая и органная музыка; 2 – среднее значение для музыки;

3 – легкая музыка; 4 – среднее значение для речи; 5 – звуковые фильмы


Профессор Гарвардского университета В. Сэбин в начале XX века экспериментально показал, что время реверберации прямо пропорционально воздушному объему помещения V и обратно пропорционально среднему коэффициенту звукопоглощения и суммарной площади ограждающих поверхностей S, и вывел формулу, удобную для вычисления времени реверберации:


. (5)


Здесь k – коэффициент, зависящий от формы зала, значения которого приведены в табл. 4.


Средний коэффициент звукопоглощения для зала на данной частоте определяется как

, (6)


где S – общая площадь внутренних поверхностей, м2; A – общая эквивалентная площадь звукопоглощения зала, м2, рассчитываемая по формуле


, (7)


где – сумма произведений площадей отдельных поверхностей , м2, на их коэффициенты звукопоглощения для данной частоты; – сумма эквивалентных площадей звукопоглощения, м2, слушателей и кресел; – добавочное звукопоглощение осветительной арматурой и другим оборудованием и звукопоглощение, вызываемое проникновением звуковых волн в различные щели и отверстия.

Таким образом, средний коэффициент звукопоглощения соответствует единому материалу, которым могли быть обработаны все внутренние поверхности зала, при котором обеспечивается общее звукопоглощение .

Формула Сэбина (5) позволяет достаточно точно определять время реверберации «живых» помещений, т. е. при небольших значениях среднего коэффициента звукопоглощения . В случае «мертвых» помещений () более точной оказывается формула Эйринга (США, 1930)


. (8)


Здесь обозначения соответствуют принятым в формуле (5).

На частотах выше 1000 Гц существенное значение имеет поглощение звука в воздушном объеме зала, и время реверберации рекомендуется определять по формуле

, (9)


где m – коэффициент, м –1, учитывающий поглощение звука в воздухе и зависящий от температуры и относительной влажности воздуха; остальные обозначения те же, что в формуле (5).

Расчет времени реверберации проводится для пустого зала и для зала, заполненного на 70 % зрителями.

Чтобы время реверберации менее зависело от процента заполнения мест, целесообразно оборудовать зал мягкими или полумягкими обитыми воздухопроницаемой тканью креслами. В залах с жесткими креслами, обладающими незначительным звукопоглощением, время реверберации пустого или малозаполненного зала сильно возрастет по сравнению с заполненным.

При расчете времени реверберации в залах со сценической коробкой, оборудованной декорациями, кулисами и т. п. и отделенной от зала порталом, объем и площади внутренних поверхностей сцены не учитываются, а вводится площадь проема сцены (в плоскости портала) с соответствующими коэффициентами звукопоглощения.

Время реверберации зала, как правило, рассчитывают для частот 125, 500 и 2000 Гц, округляя до 0,05 с.

Если время реверберации оказывается меньше рекомендуемого, следует увеличить объем зала, если больше, – убавить по возможности объем и увеличить звукопоглощение.


Звукопоглощающая отделка зала


Если воздушный объем зала выбран правильно, то для достижения нужного времени реверберации обычно не требуется специальных звукопоглощающих материалов и конструкций. В случаях, когда расчет времени реверберации показывает необходимость увеличения эквивалентной площади звукопоглощения зала, этого проще всего достигнуть применением тонких деревянных панелей, увеличивающих звукопоглощение преимущественно на низких частотах, тканевых портьер и дорожек, поглощающих, в основном, средние и высокие частоты.

Звукопоглощающие материалы и конструкции не следует располагать на участках стен и потолка, используемых для формирования первых малозапаздывающих отражений звука к слушателям. На остальной поверхности потолка и стен могут размещаться указанные звукопоглотители. Целесообразно, если это согласуется с интерьером зала, размещать звукопоглотитель раздельными участками площадью 1–5 м2, что несколько увеличивает его фактическое поглощение и дает некоторое рассеивание отраженного звука.

Поверхности над и под балконами не следует отделывать звукопоглощающими материалами.


Особенности проектирования залов различного назначения


Лекционные залы


Основным критерием оценки акустических свойств служит разборчивость речи, которая непосредственно связана с малым временем запаздывания первых отражений (не более 0,02 с). Время реверберации существенно меньше, чем для залов другого назначения.

Объем зала принимается возможно меньшим, слушатели располагаются вблизи лекционного стола, места соответственно приподнимаются. В больших аудиториях или конференц-залах места для слушателей целесообразно располагать в виде амфитеатра, что улучшает как видимость, так и разборчивость речи. Целесообразно устройство отражателей над эстрадой и на участках боковых стен, примыкающих к эстраде.

Вместимость лекционного зала обычно не превышает 400 мест, а длина – 20 м. Если же помещение должно вмещать 500 человек и более необходимо ввести балкон, чтобы слушателей приблизить к лектору.

Рекомендуемые формы лекционного зала показаны на рис. 19 и 20.




Рис. 19. Рекомендуемая форма лекционного зала





Рис. 20. Целесообразная форма потолка

при значительной длине лекционного зала


Залы драматических театров


Как и в лекционных залах, прежде всего должна быть обеспечена четкость и разборчивость речи. Но в отличие от лекционных залов источники звука (актеры) располагаются в пространстве сцены, оборудованной мягкими декорациями и связанной с залом сравнительно небольшим сценическим проемом, поэтому большая доля звуковой энергии теряется в сценической коробке. При этом из-за направленности человеческого голоса доля энергии, излучаемой в зал, становится еще меньше, когда актер отворачивается от зала. В то же время актеры обладают по сравнению с лекторами более сильными и хорошо поставленными голосами, а уровень шума в зале театра обычно ниже, чем в лекционном помещении. Последние два фактора позволяют делать залы театров значительно больших размеров, чем лекционные.

Основные рекомендуемые размеры зала: длина 26–30 м (с балконом), наибольшее расстояние от последнего ряда до плоскости портала – 27 м, ширина вблизи сцены – не более 20 м, высота – до 10 м. Максимальная вместимость зала составляет 1200 слушателей. В качестве максимального объема зала, соответствующего максимальной вместимости, рекомендуется 6000 м3.

Поверхность потолка над порталом и припортальные поверхности боковых стен следует делать выпуклыми с тем, чтобы слушательские места обеспечивались первыми отражениями при расположении источника как на авансцене, так и в глубине сцены (см. рис. 7 и 11). Более удаленные от портала участки боковых стен целесообразно скашивать (секторная форма в плане) с углом раскрытия до 10о.

В залах овальной формы при наличии ярусов акустические условия благоприятны из-за хорошего рассеивания звука.

Существенное значение имеет оборудование сцены. Увеличение количества мягких кулис и декораций может несколько уменьшить время реверберации зала. Использование же фанерных декораций увеличивает время реверберации зала. Кроме того, фанерные декорации могут направить в зал полезные звуковые отражения.


Залы театров оперы и балета


В зале оперного театра необходимо обеспечить как хорошее звучание музыки, так и хорошую разборчивость пения и речитатива.

Время реверберации должно быть на 20–25 % больше, чем в драматических театрах. Рекомендуется, чтобы время реверберации на частоте 125 Гц увеличивалось на 20 % по сравнению со временем реверберации на частоте 500 Гц. Большее значение приобретает необходимость получения высокой степени диффузности звукового поля.

Характерная форма многих залов – овальная с использованием многоярусной системы для обеспечения минимального удаления последнего ряда от сцены и создания диффузного поля.

Требования к структуре звуковых отражений не столь однозначны, как в залах для речевых программ. Увеличение интенсивности прямого звука и малозапаздывающих отражений, приводящее к большой ясности звучания, является положительным фактором для разборчивости речи. В случае слишком большой ясности звучания снижается пространственное впечатление при восприятии музыки. В свою очередь рост пространственного впечатления, связанный с несколько большим временем запаздывания отражений и с большим временем реверберации, может вызвать некоторую потерю ясности звучания.

Повышения ясности звучания при одновременном увеличении пространственного впечатления можно добиться путем увеличения энергии отражений от боковых стен (рис. 21). Запаздывание этих отражений должно находиться в диапазоне 0,025–0,08 с.





Рис. 21. Благоприятные очертания боковых стен оперного театра


Примыкающие к порталу части потолка и стен часто делают в виде выпуклых звукоотражателей. При этом необходимо обеспечить правильный баланс между звучанием голоса певца со сцены и звучанием оркестра, расположенного в оркестровой яме. Оркестр, акустическая мощность которого существенно превосходит мощность человеческого голоса, не должен «подавлять» певца. Необходимо создать условия взаимной слышимости музыкантов, а также музыкантов и певцов. Успешное решение этих задач связано с правильным выбором форм припортальной зоны зала. На рис. 22 показан удачный вариант козырька над порталом.

По аналогичным соображениям боковые припортальные стенки не должны сильно раскрываться в сторону зала. Желательно, чтобы их направление в плане было близким к продольной оси зала (см. рис. 21). Такая ориентация боковых стенок позволяет также увеличить долю поступающих к слушателям боковых отражений.





Рис. 22. Благоприятная форма звукоотражающего козырька над порталом


Созданию оптимального баланса между певцами и оркестром способствует также частичное перекрытие оркестровой ямы навесом со стороны сцены (см. рис. 3). Навес позволяет «приглушить» расположенные под ним громкие инструменты оркестра и способствует взаимной слышимости музыкантов.

Некоторые рекомендуемые характеристики зала: наибольшее расстояние от последнего ряда до плоскости портала – 35 м, высота – в пределах 10 м. Максимальная вместимость зала составляет 1500–1700 слушателей. Максимальный объем зала, соответствующего максимальной вместимости, составляет 10000 –12000 м3.


Концертные залы


Концертные залы отличаются от залов оперных театров наличием эстрады вместо сцены, что позволяет расположить отражающие звук поверхности в эстрадной части зала.

Оптимальное время реверберации зала помимо объема зависит от вида исполняемой музыки. Самое большое время реверберации требуется для органной музыки, несколько меньшее – для симфонической, сравнительно небольшое – для камерной. Как и для оперного театра, рекомендуется, чтобы время реверберации на частоте 125 Гц увеличивалось на 20 % по сравнению со временем реверберации на частоте 500 Гц. Одним из основных условий получения хороших акустических условий является обеспечение высокой степени диффузности звукового поля.

В качестве верхних пределов вместимости и объема залов камерной музыки рекомендуются соответственно 400 мест и 3000 м3. Максимальная длина зала камерной музыки – 20 м.

Минимальные размеры зала, при которых симфонический оркестр звучит достаточно хорошо, следующие: высота 9 м, длина 30 м, ширина 16 м при глубине эстрады 10 м, ширине 16 м. Минимальный объем концертного зала симфонической музыки составляет 5000 м3. В таком зале может быть размещено 400–600 мест в партере, а при наличии балкона – 600–750 мест.

Максимальные размеры концертного зала могут быть значительно большими, чем оперного театра. Наибольшая удаленность зрителя от эстрады не должна превышать 45–50 м, а в партере – 40 м, максимальная длина зала симфонической музыки не должна превышать 45 м, ширина – 30–40 м, высота в среднем – до 15 м. Максимальная вместимость зала составляет 1500–2000 слушателей. Максимальный объем зала, соответствующего максимальной вместимости, составляет 12000 –20000 м3. Для регулирования времени реверберации в залы вносят дополнительное звукопоглощение. Часто используются очень мягкие кресла и сплошное ковровое покрытие.

Ширина эстрады для оркестра не должна превышать 18 м, а ее глубина и высота потолка над ней – 12 м. Минимальная удаленность слушателей от оркестра, расположенного на эстраде, составляет 6,5 м.

Характерная форма современного концертного зала показана на рис. 23.

Значительная ширина зала приводит к слишком большому запаздыванию боковых отражений и к их ослаблению. Если при этом зал имеет сильно расходящиеся стены, то боковые отражения поступают к слушателям по направлениям, близким к направлению прихода прямого звука. В результате ослабевает пространственный эффект, очень важный для восприятия музыки. Для увеличения доли боковой энергии, поступающей к слушателям, можно получить дополнительные боковые отражения, разместив слушателей отдельными зонами на разных уровнях с таким расчетом, чтобы между этими зонами образовывались вертикальные звукоотражающие стенки (рис. 24). В зале, имеющем трапециевидную форму плана, увеличения боковой энергии можно добиться путем разбивки боковых стен на секции, размеры которых позволяют получить направленные (геометрические) отражения (рис. 25).

Важной частью зала является зона расположения оркестра, включающая эстраду и окружающие ее поверхности стен и потолка. Отражения от этих поверхностей должны поступать не только к слушателям, но и к музыкантам, улучшая условия взаимной слышимости.





Рис. 23. Типичная форма современного концертного зала





Рис. 24. Пример размещения зрительских мест

отдельными зонами на разных уровнях




Рис. 25. Распределение первых отражений

от боковых стен зала трапециевидной формы:

а – гладкие боковые стены; б – боковые стены, расчлененные на секции


Залы многоцелевого назначения


В залах клубов, актовых залах учебных заведений и т. п. акустические условия должны быть достаточно хорошими при самых разнообразных программах, хотя эти условия часто противоречивы.

Чаще всего принимается компромиссное решение. В зале обеспечивается сравнительно небольшое время реверберации, а его внутренние поверхности формируются таким образом, чтобы часть из них направляла к слушателям интенсивные малозапаздывающие отражения, увеличивая ясность звучания, в то время как другая часть создавала рассеянное отражение звука, повышающее диффузность звукового поля. Это достигается при помощи различной степени расчленения отдельных поверхностей зала (рис. 26).

Как и в музыкальных залах, ранние отражения желательно получить преимущественно от боковых стен. Это позволит усилить пространственное впечатление наряду с увеличением ясности звучания.

Наиболее оправдано компромиссное решение для многоцелевых залов средней вместимости (300–1200 мест). В таких залах нет особой необходимости в большом времени реверберации, так как симфонические концерты здесь – редкое явление. Длина зала от занавеса сцены до задней стенки не должна превышать 26 м. Максимальный объем зала составляет 1500–6000 м3.

В крупных многоцелевых залах акустическое решение связано с использованием средств электроакустики. В зале обеспечивается необходимое для речевых программ время реверберации. Увеличенное время реверберации при исполнении концертных программ осуществляется с помощью систем искусственной реверберации. Второй подход к акустическому решению крупных залов основан на использовании переменного звукопоглощения, а также трансформации звукоотражающих поверхностей и объема зала.

Рекомендуемые размеры сценического (эстрадного) пространства приведены в табл. 5.








Рис. 26. Пример расположения внутренних поверхностей зала,

обеспечивающих направленное и рассеянное отражение звука